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Previous Technical Reports to the Office of Naval Research

B A. J. Durelli, "Development of Experimental Stress Analysis Methods to \"‘\\/
Determine Stresses and Strains in Solid Propellant Grains'--June 1962.
Developments in the manufacturing of grain-propellant models are
reported. Two methods are given: a) cementing routed layers and

b) casting.

2. A. J. Durelli and V. J. Parks, "New Method to Determine Restrained
Shrinkage Stresses in Propellant Grain Models'--October 1962.
The birefringence exhibited in the curing process of a partially
restrained polyurethane rubber is used to determine the stress assoclated
with restrained shrinkage in models of solid propellant grains partially
bonded to the case.

3. A. J. Durelli, "Recent Advances in the Application of Photoelasticity in
the Missile Industry''~-October 1962.
Two- and three-dimensional photoelastic analysis of grains loaded by
pressure and by temperature are presented. Scme applications to the
optimization of fillet contours and to the redesign of case joints are
also included.

A. J. Durelli and V. J. Parks, "Experimental Solution of Some Mixed
Boundary Value Problems"--April 1964.

Means of applying known displacements and known stresses to the boundaries
of models used in experimental stress analysis are given. The applica-
tion of some of these methods to the analysis of stresses in the field

of solid propellant grains is illustrated. The presence of the "pinching
effect" is discussed.

9 A. J. Durelli, "Brief Review of the State of the Art and Expected Advance
in Experimental Stress and Strain Analysis of Solid Propellant Grains'"--
April 1964.

A brief review is made of the state of the experimental stress and strain
analysis of solid propellant grains. A discussion of the prospects for
the next fifteen years is added.

8. A. J. Durelli, "Experimental Strain and Stress Analysis of Solid Propellant

Rocket Motors'--March 1965.

A review is made of the experimental methods used to strain-analyze solid
propellant rocket motor shells and grains when subjected to different
loading conditions. Methods directed at the determination of strains in

actual rockets are included.

7o L. Ferrer, V. J. Parks and A. J. Durelli, "An Experimental Method to Analyze
Gravitational Stresses in Two-Dimensional Problems"-~October 1965.
Photoelasticity and moiré methods are used to solve two-dimensional problems
in which gravity-stresses are present.
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12.

13.

15.

A. J. Durelli, V. J. Parks and C. J. del Rio, "Stresses in a Square Slab
Bonded on Une Face to a Rigid Plate and Shrunk'--November 1965.

A square epoxy slab was bonded to a rigid plate on one of its faces in
the process of curing. In the same process the photoelastic effects
1ssociated with a state of restrained shrinkage were "frozen-in."
Three-dimensional photoelasticity was used in the apalysis.

A. J. Durelli, V. J. Parks and C. J. del Rio, "Experimental Determination
of Stresses and Displacements in Thick-Wall Cylinders of Complicated
Shape"--April 1966.

Photoelasticity and moiré are used to analyze a three-dimensional rocket
shape with a star shaped core subjected to internal pressure.

V. J. Parks, A. J. Durelli and L. Ferrer, "Gravitational Stresses
Determined Using [mmersion Techniques'--July 1966.

'he methods presented in Technical Report No. 7 above are extended to
three-dimensions. Immersion is used to increase response.

A. J. Durelli and V. J. Parks. "Experimental Stress Analysis of Loaded
Soundaries in Two-Dimensional Second Boundary Value Problems''--
February 1967.

The pinching effect that occurs in two-dimensional bonding problems,
noted in Reports 2 and 4 above, is analyzed in some detail.

A. J. Durelli, V. J. Parks, H. C. Feng and F. Chiang, "Strains and
Stresses in Matrices with Inserts,'-- May 1967.

Stresses and strains along the interfaces, and near the fiber ends, for
different fiber end confipurations, are studied in detail.

A. J. Durelli, V. J. Parks and S. Uribe, "Optimization of a Slot End
Configuration in a Finite Plate Subjected to Uniformly Distributed
Load,"--June 1907,

Two-dimensional photoelasticity was used to study various elliptical ends
to a slot, and determine which would give the lowest stress concentration
for a load normal to the slot length.

A. J. Durelli, V. J. Parks and Han-Chow Lee, "Stresses in a Split
Cyvlinder Ronded to 1 Case and Subjected to Restrained Shrinkage,"--
January 1968,

A three-dimensional photoelastic study that describes a method and
shows results for the stresses on the free boundaries and at the

bonded interface of a solid propellant rocket.

A. J. Durelli, "Experimental Stress Analysis Activities in Selected
European laboratories'--August .368,

This report has been written following a trip conducted by the author
through several European countries. A list is given of many of the
laboratories doing important experimental stress analysis work and of
the people interested in this kind of work. An attempt has been made
+0 abstract the main characteristics of the methods used in some of

the countries visited.

iiil




B e

B

s, & A

D A i A e RS A e S5l i A S

—
(o]}
.

L]
[
.

N
L3V ]

23,

"o

V. J. Parks, A. J. Durelli and L. Ferrer, "Constant Acceleration Stresses
in a Composite Body'"--October 1968.

Use of the immersion analogy to determine gravitational stresses in
two-dimensional bodies made of materials with different properties.

A. J. Durelli, J. A. Clark and A. Kochev, "Experimental Analysis of High
Frequency Stress Waves in a Ring'-~October 1968.

A method for the complete experimental determination of dynamic stress
distributions in a ring is demonstrated. Photoelastic data is supple-
mented by measurements with a capacitance gage used as a dynamic lateral
extensometer.

J. A. Clark and A. J. Durelli, "A Modified Method of Holographic Inter-
ferometry for Static and Dynamic Photoelasticity’--April 1968.

A simplified absolute retardation approach to photoelastic analysis is
described. Dynamic isopachics are presented.

J. A. Clark and A. J. Durelli, "Photoelastic Analysis of Flexural Waves
in a Bar''--May 1968.

A complete direct, full-field optical determination of dynamic stress
distribution is illustrated. The method is applied to the study of
flexural waves propagating in a urethane rubber bar. Results are
compared with approximate theories of flexural waves.

J. A. Clark and A. J. Durelli, "Optical Analysis of Vibrations in
Continuous Media'"--June 1963.

Optical methods of vibration analysis are described which are independent
of assumptions associated with theories of wave propagation. Methods are
illustrated with studies of transverse waves in prestressed bars, snap
loading of bars and motion of a fluid surrounding a vibrating bar.

V. J. Parks, A. J. Durelli, K. Chandrashekhara and T. L. Chen, '"Stress
Distribution Around a Circular Bar, with Flat and Spherical Ends,

Embedded in a Matrix in a Triaxial Stress Field"--July 1968.

A Three-dimensional photoelastic method to determine stresses in composite
materials is applied to this basic shape. The analyses of models with
different loads are combined to obtain stresses for the triaxial cases.

A. J. Durelli, V. J. Parks and L. Ferrer, "Stresses in Solid and Hollow
Spheres Subjected to Gravity or to Normal Surface Tractions'--

October 19369.

The method described in Report No. 10 above is applied to two specific
problems. An approach is suggested to extend the solutions to a class
of surrace traction problems.

J. A. Clark and A. J. Durelli, "Separation of Additive and Subtractive
Moiré Patterns'--December 1969.

A spatial filtering technique for adding and subtracting images of several
gratings is described and employed to determine the whole field of
Cartesian shears and rigid rotations.

]
4
4

PR D NP e




%

o
.

—— . ‘ -

¢ e : : _ e : oa = S ]
R. J. Sanford and A. J. Durelli, "Interpretation of Iringes 1ln oStrass-
iolo-Interfarometry"--Tuly 1370,

ociated with interpreting gtrnss-holo-inte"ferometry patterns
as the superrosition of isopachics (with half order fringe shifts) and
isochromatics are analvzed theoretically and illustrated with computer
zenerated holographic interference patterns.

J, A, Clark, A. J. Durelli and P. A, Laura, 'On
Stress on the Propagation of Flexural Waves in
ars'" --December 13970

Experimental analysis of the propagation of flexural waves in prismatic,

.
seaivmoy

elastic bars hLLu and without pres stressing. The effects of prestressing
hy axial tension, axial compression and pure bending are illustrated.

A. J. Durelli and J. A. Clark, "Experimental Analysis of Stresses in &
Buov-Cable System Using a Birefringent Fluid"--February 1971.

ension of the method of photoviscous ’nalv<i» is presented which
s quantitative studies of strains associated with steady state

=
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ibrations of immersed structures. The method is applied in an

ication of one forn of behavior of buoy-cable svstems loaded by
he action of surface waves.
i and T. I “Lu, "Displacements and Finite-Strain Fields in
jected to Larze Deformations''--February 1972.
s and strains \ran~i ng from 0.001 to 0.50) are determined in
ane sphere subjected to several levels of diametral compression.
inch grating was embedded in a meridian plane of the
effect produced wan a non-deformed master. The maximum
isplacement reduced the diameter of the sphere by 27
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A. J. Durelli and S. Machida, "‘tresses and Strain in a Disk with Variable
Modulus of Elasticity'"--March 1972

A transparent material with variable modulus of elasticity has been
manufactured that exhibits good photoelastic properties and can also be
strain analyzed by moiré. The results obtained suggests that the stress
distribution in the disk of variable I is practically the same as the
stress distribution in the homogeneous disk. 1t also indicates that the
strain fields in both cases are very different, but that it is possible,
approximately, to obtain the stress field from the strain field using the
value of E at every point, and Hooke's law.

A. J. Durelli and I. Buitrago, "State of Stress and Strain in a Rectangular
Belt Pulled Over a Cvlindrical Pulley'"-~June 1972,

Two- and three-dimensional photoelasticity as well as electrical strain
pages, dial pages and micrometers are used to determine the stress distri-
bution in a belt-pulley svstem. Contact and tangential stress for various
contact angles and friction coefficients are piven.
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32,

33.

34.

35.

36.

T. L. Chen and A. J. Durelli, "Stress Field in a Sphere Subjected to
Large Deformations'--June 1372,

Strain fields obtained in a sphere subjected to large diametral compressions
from a previous paper were converted into stress fields using two approaches.
First, the concept of strain-energy function for an isotropic elastic

body was used. Then the stress field was determined with the Hookean

type natural stress-natural strain relation. The results so obtained

were also compared.

A. J. Durelli, V. J. Parks and H. M. Hasseem, "Helices Under Load"--

July 1973.

Previous solutions for the case of close coiled helical springs and for
helices made of thin bars are extended. The complete solution is
presented in graphs for the use of designers. The theoretical development
is correlated with experiments.

T. L. Chen and A. J. Durelli, "Displacements and Finite Strain Fields in
a Hollow Sphere Subjected to Large Elastic Deformations'--September 1973.
The same methods described in No. 27, were applied to a hollow sphere
with an inner diameter one half the outer diameter. The hollow sphere
was loaded up to a strain of 30 per cent on the meridian plane and a
reduction of the diameter by 20 per cent.

A. J. Durelli, H. H. Hasseem and V. J. Parks, '"New Experimental Method
in Three-Dimensional Elastostatics"--December 1973.

A new material is reported which is unique among three-dimensional
stress-freezing materials, in that, in its heated (or rubbery) state
it has a Poisson's ratio which is appreciably lower than 0.5. For a
loaded model, made of this material, the unique property allows the
direct determination of stresses from strain measurements taken at
interior points in the model.

J. Wolak and V. J. Parks, "Evaluation of Large Strains in Industrial
Applications'"-~April 1974.

It was shown that Mohr's circle permits the transformation of strain from
one axis of reference to another, irrespective of the magnitude of the
strain, and leads to the evaluation of the principal strain components
from the measurement of direct strain in three directions.

A. J. Durelli, "Experimental Stress Analysis Activities in Selected

European Laboratories'--April 1975.
Continuation of Report No. 15 after a visit to Belgium, Holland, Germany,

France, Turkey, England and Scotland.

A. J. Durelli, V. J. Parks and J. 0. BRiihler-Vidal, "Linear and Noa-linear
flastic and Plastic Strains in a Plate with a Big Hole Loaded Axially in
its Plane'"--July 1975.

Strain analysis of the ligament of a plate with a big hole indicates that
both geometric and material non-linearity may take place. The strain
concentration factor was found to vary from 1 to 2 depending on the level
of deformation.
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A. J. Durelli, V. Pavlin, J. 0. Biihler-vidal and G. Ome, "Elastostatics
of a Cubic Box Subjected to Concentrated Loads'-- 1gust 1975,

Analysis of experimental strain, stress and deflection of a cubic box
subjected to concentrated loads applied at the center of two opposite
The ratio between the inside span and the wall thickness was

varied between approximately S and 121.

faces.

A. J. Durelli, V. J. Parks and J. 0. Bithler-Vidal, "Elastostatics of
Cubic Boxes Subjected to Pressure'--March 1976.

txperimental analysis of strain, stress and deflecticns in a cubic box
subjected to either intermal or external pressure. Inside span-to-wall

thickness ratio varied from 5 to 1.

Y. Y. Hung, J. D. Hovanesian and A. J. Durelli, '"New Optical Method to
Determine Vibration-Induced Strains with Variable Sensitivity After
Recording'' --November 1976.

A steady state vibrating object is illuminated with coherent light and
its image slightly misfocused. The resulting specklegram is "time-
integrated" as when Fourier filtered gives derivatives of the vibrational

amplitude.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Cyclic
Stress Studies by Time-Averaged Photoelasticity'--November 1£76.

"Time-averaged isochromatics" are formed when the photographi: film is
exposed for more than ore period. Fringes represent amplitudes of the

oscillating stress according to the zeroth order Bessel function.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "1 ime-
Averaged Shadow Moiré Method for Studying Vibrations'--November 1i376.
Time-averaged shadow moiré permits the determination of the amplitude
distribution of the deflection of a steady vibrating plate.

J. Buitrago and A. J. Durelli, "On the Interpretation of Shadow-Moiré
Fringes"--April 1977.

Possible rotations and translations of the grating are considered in a
general expression to interpret shadow-moiré fringes and on the
sensitivity of the method. Application to an inverted perforated tube.

J. der Hovanesian, "18th Polish Solid Mechanics Conference." Published in
Eurovean Scientific Notes of the Office of Naval Research, in London,
England, Dec. 31, 1976.

Comments on the planning and organization of, and scientific content of
paper prasented at the 18th Polish Solid Mechanics Conference held in

Wisla-Jawornik from September 7-1u4, 1876.

A. J. Durelli, "The Difficult Choice,"--May 1977.

The advantages and limitations of methods available for the analyses
of displacements, strain, and stresses are considered. Comments are
made on several theoretical approaches, in particular approximate
methods, and attention is concentrated on experimental methods: photo-
elasticity, moiré, brittle and photoelastic coatings, gages, grids,
holography and speckle to solve two- and three-dimensional problems in
elasticity, plasticity, dynamics and anisotropy.
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46.
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C. Y. Liang, Y. Y. Hung, A. J. Durelli and J. D. Hovanesian,

"Direct Determination of Flexural Strains in Plates Using Projected
Gratings,''--June 1977,

The method requires the rotation of one photograph of the deformed
grating over a copy of itself. The moiré produced yields strains by
optical double differentiation of deflections. Applied to projected
gratings the idea permits the study of plates subjected ro much larger
deflections than the ones that can be studied with holograms.

A. J. Durelli, K. Brown and P. Yee, '"Optimization of Geometric
Discontinuities in Stress Fields''--March 1978.

The concept of "coefficient of efficiency" is introduced to evaluate
the degree of optimization. An ideal design of the inside boundary of
a tube subjected to diametral compression is developed which decreases
its maximum stress by 25%, at the time it also decreases its weight by
10%. The efficiencv coefficient is increased from 0.59 to 0.95.

Tests with a brittle material show an increase in strength of 20%. An
ideal design of the boundary of the hole in a plate subjected to axial
load reduces the maximum stresses by 26% and increases the coefficient
of efficiency from 0.54 to 0.90.

J. D. Hovanesian, Y. Y. Hung and A. J. Durelli, "New Optical Method

to Determine Vibration-Induced Strains With Variable Sensitivity After
Recording''--May 1978. '

A steady-state vibrating object is illuminated with coherent light and
its image is slightly misfocused in the film plane of a camera. The
resulting processed film is called a "time-integrated specklegram."

When the specklegram is Fourier tiltered, it exhibits fringes depicting
derivatives of the vibrational amplitude. The direction of the spatial
derivative, as well as the fringe sensitivity mav be easily and continu-
ously varied during the Fourier filtering process. This new method is
also much less demanding than holographic interferometry with respect to
vibration isolation, optical set-up time, illuminating source coherence,
required film resolution. etc.

Y. Y. Hupy and A. J. Durelli, "timultaneous Determination of Three
Strain Components in Speckle Interterometry Using a Multiple Image
Shearing Camera,'--September 1978

This paper describes a multiple image-shearing camera. Ircorporating
coherent light illumination, the camera serves as a multiple shearing
speckle interferometer which measures the derivatives of surface
displacements with respect to three directions simultaneously. The
application of the camera to the study of flexural strains in bent
plates is shown, and the determination of the complete state of two-
dimensional strains is also considered. The multiple image-shearing
camera uses an interference phenomena, but is less demanding than
holographic interferometry with respect to vibration isolation and the
coherence of the light source. It is superior to other speckle
techniques in that the obtained fringes are of much better quality.




QUASI-SQUARE HOLE WITH OPTIMUM SHAPE IN AN INFINITE PLATE

SUBJECTED TO_IN-PLANE LOADING

by

A. J. Durelli and K. Rajaiah

ABSTRACT
This paper deals with the optimization of the shape of the corners
and sides of a square hole, located in a large plate and subjected to
in-plane loads, with the object of minimizing stress concentrations.
Appreciable disagreement has been found between the results obtained
previously by other investigators. In this paper new tests have been
conducted and discrepancies have been corrected. Using an optimization
technique, the authors have developed a quasi square shape which introduces
a stress concentration of only 2.54 in a uniaxial field, the comparable
value for the circular hole being 3. The efficiency factor of the proposed
optimum shape is 0.90 whereas the efficiency factor of the best shape
aeveloped previously was 0.71. The shape also is developed that minimizes
the stress concentration in the case of biaxial loading when the ratio of

biaxiality is 1:-1.




Introduction:

The problem of a square hole with rounded cornmers in an infinite plate
subjected to uniaxial loading has attracted the attention of several inves-
tigators over the years. Richmond(l) conducted photoelastic tests with
three differenc corner radii and concluded that "2 minimum stress concentration
factor seems to result for a value of % of about l," where r is the corner
radius and D the width of hole. He also found that the minimum value of the
stress concentration factor (s.c.f.) was less than 3, the value corresponding
to the circular hole. Mindlin(z) in the discussion of the paper stated that

(3)

Richrmond's finding was a result of importance. Peterson in his recent

monograph on "Stress Concentration Factors' presented the theoretical results
obtained by Sobey(a) for rectangular holes with round corners. Comparison of
Sobey's values with those of Richmond for square holes shows gross under-
estimate of the s.c.f. by Richmond (Fig. 1). According to Sobey, the

minimum possible stress concentration factor is 2.85 for a corner radius of
0.37D, whereas Richmond reported a minimum of 2.5 for a corner radius of D/6.
As stated by Peterson(s), Richmond "probably used a small model, and with
techniques of that time and the edge effect problem,his results could be
considerably in error." The importance of the subject and contradictions
among authors made advisable the review of other contributions and conducting

new tests. That is the object of this paper. Emphasis will be placed on

the optimization of the shape.

Previous Contributions:

6), (7), (8, (9)

Sobey in his review of previous analyses that were

conducted using the Schwarz-Christoffel transformation of the square with




—
sharp corners as approximation to the square with round corners found
that the authors used only two or three terms in the mapping function and
"their profile differs considerably in local curvature variation from
the ideal profile so that the stress distributions are not very accurate."
AC)

Sobey used Mushkilishvili's complex variable metho but included a large

number of terms in the mapping function to get high accuracy for the hole
(10)

shape and hence for the stress distribution. Isida analyzed the problem

of hypotrochoidal hole with four sides which approximates square holes with
rounded corners in finite and infinite plates using a perturbation method.

His numerical results for a corner radius of 0.125D are lower than Sobey's

(Fig. 1).

(12)

Savin(ll) presented the results obtained by Leknitsky using the

conformal mapping technique. For the cornmer radius 0.2D these results are
also lower than those obtained by Sobey (Fig. 1).

Ross(13) reported results of numerous photoelastic experiments on holes
and notches in thin plates under uniaxial tension, including those for
square holes with rounded corners. His results show a gross overestimate
of the s.c.f.'s when compared to Sobey's values (Fig. 1). It would appear
that the extrapolation technique used by Ross is not correct (for the
circular hole he obtains a s.c.f. of 3.25). Ross also presented results for
(14)

a barrel-shaped hole proposed earlier by Heywood as an "ideal shape' for

holes in infinite plates under uniaxial tension. The s.c.f. for this case

also appears to have been overestimated.

(15)

have shown that, similarly to
(16),(17),(18),(19)

More recently Durelli, Brown and Yee
the earlier work for fillets by Durelli et al hole shapes
can also be very effectively optimized by using two-dimensional photoelastic

techniques. Following that approach, it is shown in the present work that

by optimizing the shape of the square hole, a s.c.f. significantly lower than
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the lowest value given can be achieved. 1t has also been verified

experimentally that the results given by Richmond and Ross are in error.

Square Hole with Rounded Cormers:

Experiments were conducted first on plates with square holes with
rounded corners for two different corner radii. Two plates of 11":11"x0.272"
(280x280x2.9mm) with hole size (D) of 1.5" x 1.5" (38x38mm), one with a
corner radius of 0.25" (6.4mm) equal to (D/6) and the other with 0.555" (14mm)
equal to (0.37D) radius were machined out of Homalite-100. The fringe
constant was 151 1b/in-fr (26.2 kN/m-fr). The plates were loaded under
uniform compression on two opposite edges. The resulting s.c.f. values
are shown in Fig. 1 and the corresponding photoelastic isochromatic patterns
are shown in Figs. 2 and 3. The stress distributions around the hole for the
two cases, referred to the net area, are included in Fig. 4. It is seen from
Fig. 1 that the present results are in close agreement with Sobey's and not
so with those of Richmond, Ross, Savin nor Isida. (The s.c.f. given by
Peterson and Ross, referred to the gross area, have been referred for

comparison purposes to the net area.)

Optimization of the Square Hole:

The constraints of the problem are: (a) the inside boundary has to lie
inbetween the circle of diameter D and the square of side D; (b) the allowable
maximum stress for compression is about three times the allowable maximum
stress for tension. To start the optimization process a plate with a hole with

a corner radius of 0.37D was selected as this hole exhibits a low s.c.f.
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Material was removed from the lower stress regions of the boundary, at and
near the horizontal axis and at the corner by careful hand filing while the
model was under load until an isochromatic fringe coincided with the boundary
of the model. The resulting isochromatic pattern is shown in Fig. 5 and the
stress distribution around the hole is presented in Fig. 4. For the sake of
comparison, Fig. 4 also includes the distributions given by Ross (for Heywood's
ideal shape), by Savin for the square hole with 0.2D corner radius, by
lsida for the square hole with 0.125D corner radius and also for the circular
hole.

The empirically developed geometry has been fitted with a combination of
circles of different diameters and common tangents at the points of inter-
sections. The geometry of the optimized shape is shown in Fig. 6.

In an earlier paper(a), it was proposed that the degree of optimization

be evaluated quantitatively as a coefficient of efficiency, keff’ defined as

S $
Rt T ]
eff 32—80 5 o
“ate akf
where o represents the maximum allowable stress (the positive and negative

aLl
superscripts referring to tensile and compressive stresses, respectively),
SO and Sl are the limiting points of the segment of the boundary subjected to
tensile stresses and Sl and 82 are limiting points of the segment of boundary

with compressive stresses. The same criterion has been used here too to

evaluate the shapes and the results are discussed below.




The Biaxial Case:

It has been shown that the optimum shape of a hole in a biaxial field of
two loadings of the same sign is an ellipse the eccentricity of which is
related to the biaxiality ratio(zo). For 1:1 biaxiality, the shape of the
hole is a circle and the s.c.f. is 2. However, for loadings of opposite
sign no such simple relation has been found.

The above study suggests that, for a plate under pure shear (1:-1
biaxiality),a doubly symmetric shape with both the longitudinal and the
transverse edges of barrel shape (double barrel) would appear to be close to
an optimum shape. This case has also been investigated here.

A double barrel shaped hole with the radius of curvature of each edge
being 1.25D as in the case of the optimized hole was made in a large Homalite-
100 plate and tested. For a uniaxial loading this shape provides a slightly
increased stress level on the edge perpendicular to the load while the one on
the edge parallel to the load stays the same (Fig. 4 and Fig. 7). However,

for the case of shear loading, there is a 10% reduction in s.c.f. (Fig. 8).

The Case of the Notch:
It is well-known that the s.c.f. for the case of a semi-circular edge
notch in a wide plate under uniaxial load is approximately the same as that

(3

for a circular hole in a wide plate under uniaxial load. Based on this
observation, it is believed that the optimum shape for a notch in a wide plate

subjected to uniaxial loading will be approximately the same as the optimum

shape developed above for the case of the square hole.
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Discussion and Conclusion:

By the optimization method followed here, it has been possible to obtain
a s.c.t. of 2.54 for the square hole with rounded corners. This value is
112 lower than the s.c.f. value of 2.85 as given by Peterson following

about
Sobey. The efficiency factor for the optimum shape 1s 0.90 whereas it is
0.71 for the shape piven by Peterson as corresponding to the minimum s.c.f.,
0.67 for Richmond's ciwimum s.c¢.f. shape and 0.74 for Ross results obtained
using Hevwood's 'ideal shape.' The corresponding value for a circular hole
is 0.61.

Richmond's values tor s.c.f. are found to be significantly in error on
the low side while Ross's results are significantly in error on the high
side. 1t may be sately concluded that Ross's values for Heywood's "ideal
shape'" are also significantly overestimated; in fact, the s.c.f. for
Hevwood's shape may be expected to be less than 3. The isochromatic pattern
piven by Ross shows that Heywood's shape is quite close to an optimum with
only a slight stress concentration on the horfzontal axis of symmetry
normal to the load. The radius of curvature for the longitudinal sides
of the hole is given as D by Heywood while it is estimated to be 1.25D for
the optimized shape proposed here.

For a plate subjected to pure shear, the double barrel shape vields

a 0% reduction in s.c.t,
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FIG. 2 STRESSES AT THE BOUNDARY NF A SQUARE HOLE WITH A ROUNDED

CORNER (==D/6) IN A LARGE PLATE (y = 0.136) SUBJECTED TO
UNTAXIAL LOAD




FIG. 3 STRESSES AT THE BONUNDARY NF A SNUARE HOLE WITH A ROUNDED
CORNER (r = 0.37D) IN A LARGE PLATE ( = 0.136) SUBJECTED
TO UNIAXIAL LOAD
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FIG. 4 DISTRIBUTION OF STRESSES AROUND A QUASI-SAUARE HOLE WITH
ROUNDED CORNERS IN A LARGE PLATE SUBJECTED TO UNIAXIAL

LOADING
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FIG, 5 STRESSES AT THE BOUNDARY OF AN OPTIMIZED QUASI-SQUARE HOLE
IN LARGE PLATE (¢ = 0,140) SUBJECT=D T0 UNTAXIAL LOAD
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FIG. 6 OPTIMIZED GEOMETRY OF A QUASI-SQUARE HOLE ASSOCIATED WITH

THE MINIMUM STRESS CONCENTRATION FACTOR IN A LARGE PLATE
SUBJECTED TO UNIAXIAL LOADING
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FIG. 7 STRESSES AT THE BOUNDARY OF A DOUBLE BARREL HOLE IN A
LARGE PLATE (B = 0,163) SUBJECTED TO UNIAXIAL LOAD
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